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Introduction

Light scattered from periodic structures carrier useful information about the diffracting
structure. The existence of the periodic structure provides an enhanced sensitivity to changes in the
shape of the grating, and numerous metrology applications in microelectronics manufacturing have
evolved over the years to exploit this behavior of the scattered fields. Diffraction based techniques
now exist for alignment [1], overlay [2], temperature measurement [3], latent image focus [4°5] and
exposure [6] measurement, post exposure bake monitoring [7] and numerous dimensional
parameter control applications [8°9]. These applications exploit the sensitivity of the diffraction
pattern to changes in the value of the parameter being measured. An attractive feature of these
techniques is that they are rapid, non—contact, non—destructive and quantitative. An additional
advantage is that they are greatly amenable to real-time and in-situ applications.

The continued shrinkage of dimensions is placing an unprecedented demand on the various
metrology techniques. For diffraction based techniques it is clear that a fundamental understanding
of the diffraction phenomena is essential to the continued use of these methods as critical dimensions
approach a quarter micron. Using scalar diffraction theory, the farfield diffraction pattern can be
calculated from the Fraunhoffer diffraction integral [10]. It is well know that as the dimension of the
diffracting structure becomes comparable to the wavelength of the incident field, use of scalar
diffraction theory can no longer be justified [11]. This is illustrated in Figure 1 which is a plot of the
power diffracted into the reflected O—order, as a function of grating depth. The diffracted powers are
calculated for a monochromatic (A= 0.6328 pum) plane wave normally incident on an equal line and
space etched silicon (n = 3.84) grating having a period of 1.5um . The three curves are for a scalar

theoretic prediction and rigorous vector theory predictions for TE and TM polarization cases.

It can be shown using scalar theory that, for the grating under consideration, the fraction of

incident power diffracted into the reflected O—order obeys the following relationship [9],
2k || 2
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where his the height of the grating and A is the wavelength of incidentradiation. The proportionality
factor is found by noting that in the limit as the height of the grating becomes very small, Pgis simply
given by the Fresnel Formula [Born and wolf page 40]
2

nm — na

Py o = = 0344 . @

ny + np
Here 1, is the refractive index of the incident medium (air), and 7y is the refractive index of the
grating region (silicon). The vector theoretic calculations were done using rigorous coupled wave
theory, described in the following section. Figure 1 illustrates that for grating depths less than A4,
reasonable results are obtained using scalar theory. For deeper gratings, a vector theoretic approach
is required. Figure 1 also illustrates how scalar theory may be used to describe some general
characteristics of the diffracted signal especially for the case of TE polarization. In most cases, the
diffraction behavior, for the TM polarization case, can only be described using a rigorous vector
approach.
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Rapid advances in computational capabilities, due, in part at least, to the shrinkage in device
dimensions, have made it possible to obtain solution to many of the diffraction problems previously
considered to be intractable. Numerous techniques have been developed over the years for the
solution of the grating diffraction problem. An excellent overview of these techniques may be found
in [12°13]. A large number of solution methods may be broadly classified into integral and
differential methods. Both methods are equally rigorous, however, they differ widely in ease of
implementation and applicability to a broad class of problems. Due to the mathematical complexity
associated with integral methods, they are not widely used. Among the differential methods
Rigorous Coupled Wave Theory (RCWT) developed by Moharram and Gaylord, [12] has proved to
be particularly useful because of its ease of use and wide range of applicability. It will be discussed in
detail in a later section. An equivalent differential technique, [14], (known as the modal method) that
utilizes waveguide modes for the expansion of the fields inside the grating region was developed by
Burchardt [15] and Kaspar [16]. This method has been used and extended by Nyyssonen and Kirk,
[17] and by Yuan and Strojwas [18] for the rigorous simulation of images obtained in a microscope
and simulation of alignment signals.

Both RCWT and modal method utilizes a Fourier expansion of the refractive index in the
grating region. Thus, these techniques work well for gratings having a continuously varying
refractive index (e.g. latent image gratings) and grating where the extent of the refractive index
discontinuity is not large (e.g. dielectric and semiconductor gratings). In cases where the refractive
index discontinuity is large, the analytical waveguide model developed by Botten et. al, [19] and
extended by Davidson, [20] has been shown to have improved convergence characteristics [14].
Integral methods also do not utilize a Fourier based expansion. In these methods, the field is
represented by a convolution product involving a Green function deduced from the propagation
equation.

Two additional solution techniques should be mentioned here because of their versatility in
solving nearly all singly and doubly periodic grating diffraction problems. The tradeoff is in the
computationally intensive requirements of both techniques. The first technique utilizes Finite
Element Analysis and has been developed by Wojck et. al. [21] for the simulation of metrology and
alignment signals in IC-related applications. The second technique, TEMPEST developed at
Berkeley, [22] is a massively parallel computer solution of the vector diffraction problem using a
time—domain, finite—difference method. TEMPEST is implemented on the massively parallel
architecture of the Thinking Machines Corp. Connection Machine. Recently there has been an effort
to compare the various grating simulation techniques [23] and a good preliminary agreement was
achieved between the Finite Element Method, the analytic waveguide method and the coupled wave
approach for resist on silicon diffraction gratings.

In the sections that follow a description of RCWT is provided along with its application to
various diffraction based metrology techniques. These applications include latent image diffraction
analysis, phase—shift mask characterization, large pitch etched structure characterization and optical
microscopy. Recently a novel technique has been proposed for the characterization of grating
structures [24]. The grating pattern is illuminated with a laser beam and the power diffracted into a
particular order is measured as the angle of incidence is varied over some range. Slight changes in
dimensional parameters of the grating (e.g. linewidth, sidewall angle, height) change the shape of the
angular scan curve. Assuming no two parameter sets produce the same curve, a prediction of grating
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dimensional parameters can be made. The novel aspect of this work is that the prediction algorithm is
trained on angular scan curves generated using RCWT [25]. A discussion of the technique as well as
some recent results will be given in a later section.

Rigorous Coupled Wave Theory

Consider the diffraction grating shown in Figure 2 . The grating is assumed to be infinite
dimensional with periodicity in the x—direction and no variation in the structure in the y—direction.
Practically, 12 to 20 lines are considered to be a reasonable approximation to an infinite structure.
The grating structure is divided into different regions. The parameters of interest are defined in
Figure 2. The model considers an electromagnetic plane wave obliquely incident on a diffraction
grating placed on a P layer dielectric stack. Region 1 is the incident region, region2 is the grating
region and regions 3 represents the P-layer dielectric stack, while the substrate is regiond. In order to
consider arbitrary profiles, the grating region is sliced into L arbitrarily thin layers, each having a
refractive index profile varying in a periodic manner in the x—direction and invariant in the
z—direction.

The incident field is an obliquely incident TE polarized plane wave having the E-field vector
in the direction parallel to the grating lines. The reader is referred to [26] for the TM and arbitrary
polarization cases. The periodic structure produces both forward and backward diffracted waves.
The field in the incidentregion, (region 1) can be described as the sum of the incident plane wave and
multiple backward diffracted orders as

N

E\(x,y,2) = Expl—jlkowx + ko)) + . RiExpl-jlsx—ki2)l, )
i=-N

where koy = k‘/E'lsinﬁ ; Kpe = k,/e_icosﬁ and k= 27r/A . Here O is the angle of

incidence, A is the wavelength in free—space, and N is the number of positive and negative kept in
the analysis. R; are the coefficients of the i’th order backward diffracted waves. From Floquet’s

theorem it is well know that the diffracted field must have the same periodicity as the grating
structure and

T
kix = k()x = 17, (4)

where k;, isthe x—component of the ith diffracted plane wave and dis the period of the grating. If the
order is propagating, kjy = k J€_1 sin @; and substituting for Ky it can be seen that equation 4 is
simply the general representation of the grating equation,

sinf; = sin@—ii. (5)
d

In region 1 the diffracted plane waves have wave vectors with magnitudes lky;l = k€ | and

therefore, ky;; = \/ (k%€ , — k% ). Applying coupled wave analysis, in the grating region (region
2), the field for each n’th slice may be expanded in terms of it’s space harmonic components in the
periodic structure and expressed as
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Ep(x.y.2) = D Sin(@)Expl—jlhiwt + ko:2)), (6)
i=-N

where n is the sliced layer index, 1 is the space—harmonic index and S;,(z) are the space-harmonic
field amplitudes for the n’th slice. Each wave in this expansion represents an inhomogenous plane
wave inside the grating region corresponding to the diffracted orders outside the grating. The
essential difference between RCWT and modal methods is in the expansion of the electromagnetic
fields in the grating region. In any region, the total field must satisfy the wave equation. For TE
polarization, we have

V2E,, + k%, (x,2) = 0, (7

where €,(x,z) is the Fourier series expansion of the index profile within each slice and is given by

o]
A 27tlx
€,(x.2,) = § Z €uExp = | (8)
l = —00
Substituting equations (6) and (8) into (7), a set of state space equations are obtained whose solutions

may be expressed as
2M

S$in(@ = . CouWinnEXpPomn2), ©)
m=1
where M = 2N + 1.

Here wj,, and A,,, are the eigenvectors and eigenvalues obtained from the solution of the
differential equation for the n’th planar grating slab. C,, are the unknown coefficients to be

determined. Application of the boundary conditions at each slice interface requires the continuity of
the tangential electric and magnetic fields that yields a set of linear equations. The grating is placed
on top of the dielectric stack and the last boundary condition equation is obtained by matching the
fields at the L’th grating slice and region 3 interface. The effect of field scattering in the multilayered
dielectric stack layer is incorporated in the last boundary condition in the following manner. The
field in the p’th dielectric layer, beneath the grating structure, consists of multiple backward and
forward diffracted orders [27] which may be expanded as,

N
ES63,2) = . (pExpl=jkipe(z = wp) + YipExplikipa(z ~ wp)DExpl—j(ki)],  (10)
i=-N
forp=3,1....3,P. Here kj, = (k%€ S k%c)ll2 ,and wp, is the height of the p’th region. For each
p’thregion, if we define X, ip = DipYip and enforce appropriate boundary conditions the following
recursive relationship for D;, is obtained [28],

. E,+1.0
Dip = Exp(}’Zkipzwp)[ =2 :l,

R for 2 AT s P (I
E;,~10 P ¢

where
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k'z D,‘ +1.0
4 [ L } for p = 3,1 ... 3,P-1

ip k
& for p = 3P
ki4z

The coefficient Dip incorporates the effect of the dielectric stack and reduces the number of

unknowns. Thus, the L’th grating slice, region 4 boundary can be effectively considered as the last
interface. The total set of linear equations obtained may be solved using Gaussian Elimination to

yield the reflection coefficients R; .

An important consideration in the solution of the diffraction problem using RCWT is the
choice of N, the maximum number of diffracted orders kept in the analysis. Approximate memory
requirements using N diffracted modes is 16(2N + 1)2 bytes. The computer time required to solve
one diffraction problem increases as N and therefore it is important to choose the correct value of N
to provide an accurate solution in a reasonable amount of time. The rate of convergence of solution
with increasing N is primarily determined by the difference in refractive index of the line and space
in the grating region, and to lesser extent by the incident field wavelength to grating period ratio, A/d.
A rule of thumb relationship that is useful in determining the correct value of N that should be used
for dielectric gratings, is

1.6
(i’lz - m

where, Ix! is the ceiling of x and is the smallest integer larger than x. ny and n; are the refractive
indices of the line and space portions of the grating respectively. The value of N chosen should
always be confirmed by increasing the value of N to see if a significant change in diffraction
efficiencies occur.

125
d

il = (13)

N = :
2

Modeling of Optical Microscope Images

Optical microscopy has traditionally been the metrology technique of choice in
semiconductor manufacturing, but with the continuing reduction in feature size of semiconductor
components, the interpretation of the signal obtained in the microscope has become more and more
difficult. Several researchers have addressed the issue of measurements of submicrometer features
using optical imaging. A complete description of techniques used to model the image obtained in an
optical microscope may be found in [29], and is summarized below:

1. Calculate the incident light pattern on the object’s surface, using an imaging model. To
perform this task Abbe’s theory, a scalar approach, is used.

2. Using a scattering model, calculate the reflected or transmitted light pattern due to the
presence of a grating surface .

3. Calculate the collected light pattern on the surface of the detector using the same imaging
model as in step 1.
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In a scalar scattering model the object is described by a planar complex reflectance and
transmittance. This model was initially used by Nyyssonen et. al. [30] to determine the
characteristics of the optical image of a line as observed in an optical microscope.

Since accuracy of the optical metrology tool should be 1/10 of the measured width and based
upon the fact that the scalar theory can only be applied to objects that have thickness smaller than A4,
Nvyssonen [31] adopted the waveguide model to calculate the reflected fields from semiconductors.
Kirk and Nyyssonen [17] improved the model allowing it to predict the optical microscope images of
line objects with arbitrary edge geometry. Yuan et al [18] extended the model to include arbitrary
polarization and a large NA lens. This simulation software, known as METRO, is available from
Camegie Mellon University. The analytical waveguide model has also been used to simulate the
scattered field and it is the basis for the optical microscope simulation software Metrologia that is
distributed by Spectel Co. [20].

Recently the METRO package utilizing the modal approach for the scattered fields has been
modified to use RCWT for the calculation of the scattered fields. Figure 3 is a plot of the image that
would be obtained in an optical microscope using Kohler illumination. The object is seen through a
bright field optical microscope with partially coherent illumination (S=2/3) and objective’s
NA=0.90. Illumination is done by an Arc Hg lamp where the center frequency is 480.0 nm with a
bandwidth at FWHM of 150 nm. The sample under consideration is a developed photoresist (n =
1.656) grating on a thin layer of nitride (n = 2.044) placed on a Silicon substrate. The photoresist
grating has a period of 1.2 um, linewidth of 0.6 pm and is 1.0 pum thick. The three plots simulate the
effect of nitride thickness variation on the optical microscope profile. It can be seen that if the same
threshold was used in the three cases, a different value of linewidth would be obtained. Figure 4 isa
plot of the linewidth that would be obtained if the threshold was defined using the microscope plot
for the 75nm nitride thickness case. This is one of the reasons why optical microscope are not used to
measure sub—micron photoresist linewidths on a layer of nitride.

Analysis of Diffraction from Latent Image Gratings

The latent image consists of the distribution of photoactive compound (PAC) concentration
within the photoresist layer. This represents a change in chemical distribution inside the photoresist
which is induced by the aerial image projected by the exposure tool, [32]. The index of refraction in
the photoresist is linearly dependent on the PAC concentration, [33], and consequently it is a
function of both exposure and focus. A latent image grating is formed by exposing the photoresist
using a grating photomask in the exposure tool, or using holographic exposure techniques, thereby
causing a periodic variation in the PAC concentration. If we consider two samples exposed with a
grating image for different amounts of time or using different focus values, the three—dimensional
distribution of refractive indices of the photoresist will be different for the different regions of the
phase grating created inside the photoresist. The PAC concentration then forms the basis for the
pattern of the photoresist which is subsequently formed as a result of post—exposure bake and
development.

The ability to model diffraction from a latent image grating relies on the fact that the refractive
index of the photoresist changes with PAC concentration. The PAC concentration is a function of the
amount of light absorbed which depends on the aerial image, focus, exposure dose and the optical
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properties of the resist and underlying films. Figure 5 is an example of the PAC concentration
calculated using PROLITH. A value of 1 corresponds to unexposed resist, while a value of 0
corresponds to fully exposed resist. As a first approximation, the refractive index profile inside the
photoresist can be assumed to be linearly dependent on the PAC concentration profile.

To calculate the amount of power diffracted into the various orders from a latent image
grating, we combine the lithography simulation program with rigorous coupled wave analysis. A
piecewise constant approximation to the continuously varying PAC profile in the z direction is
created by slicing the PAC profile into very thin slices, along planes parallel to the x—y plane. In each
slice, the PAC profile can be assumed be constant with depth z. This PAC concentration profile is
incorporated into the diffraction analysis program using the procedure described in [34]. Theimaged
pattern is a grating periodic in the x—direction. Following the treatment in [34], the index variation in
the n’th grating slice varies as a function of x only and is expanded in a Fourier series. The analysis
procedure is slightly modified to accommodate the continuous variation in refractive index inside
the photoresist due to a continuously varying PAC concentration profile. The Fourier series
expansion of the refractive index profile is written as

oo
A 27tlx
€,(x,2,) = 60(62 - 63) Z €, EXp ]—d— + €. (14)
! = -
In order to calculate the 1’th Fourier series coefficients, €,, , of each n’th grating slice from the PAC

concentration profile, a sample—and—hold method is used. An example of an arbitrary slice and its
sampled approximation is shown in Figure 6 . Each Fourier coefficient is calculated using

-~

0-1
1 2mql g + 1)
— exp| -j— | - exp| -j——— I = 0
A jzmg)f" Pl /5 R
E[,n = 1
1 <&
5qu I =0,
L =0 (15)

where Q is the total number of samples in the x—direction and f; is the value of each sample at each

location as shown in Figure 3. No other modification is made to the analysis procedure. Additional
details of the analysis procedure are provided in [35].

The shape of the developed photoresist structure is critically dependent on the focal position
chosen during exposure. Optimal focus is defined to be the focal position which results in near
vertical sidewalls in the developed photoresist. It is reasonable to assume that optimal focus
conditions will be obtained when the contrast of the latent image is maximized. Specifically it is the
PAC concentration contrast, Cpac(z;) , that needs to be maximized. At any location inside the
photoresist this contrast may be defined in terms of the maximum, #mmax(z;), and minimum,

mmin(zi) , PAC concentrations at z; as

Mmax(Zi) — Mmin(2) (16)
Mmax(Z) + Mmin(2))

Because of the standing wave effects of the exposing radiation, Cpac varies with z, and an average
PAC concentration can be defined as,

Cpacl(z) =
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This number, Cgy, , represents a figure of merit for the overall contrast or quality of the latent image.
The larger Cgy, is, the larger the PAC gradient is in the x—direction of the line structure, and the

greater the slope, or sharpness of the developed photoresist lines, which is the intended purpose of
improving the lithography process.

Figure 7 is a plot of the average contrast as a function of focus for three different
samples. In each case the photoresist was 1.1 pm thick, and Caye was maximized at a focal position

of —0.3 um. This value is consistent with results obtained in [32] and [4]. Note that the focal position
is defined such that 0.0um corresponds to the top (surface) of the photoresist layer, and negative
locations are inside the photoresist. The three wafer samples considered in Figure 6 were:
photoresist on a bare Si wafer, photoresist on a silicon nitride layer 1.0 pm thick on a Si wafer, and
photoresist on a layer of polycrystalline silicon 0.25 pm thick on a layer of silicon oxide 0.155 pm
thick on a Si wafer. The latent image is a periodic structure (i.e. a grating) having a nominal linewidth
of 1.0 um and a pitch (period) of 2.0 um. The exposure doses used to model the wafers were 150
mJ/cm? for the first sample, 110 mJ/cm? for the second sample, and 120 mJ/cm2 for the third sample.
Simulations have shown that within a wide range of exposure values, the focus position for which
Cavg 15 maximized remains unchanged.

Figure 8 illustrates the intensities of the 1st—order diffracted beams from latent images
plotted versus exposure tool focus using rigorous coupled wave diffraction analysis, together with
PROLITH for the same three sample structures considered in connection with Figure 6. The
diffracted intensities reach a maximum at the focal position of approximately —0.3 pm, the same
focal position which resulted in a maximum C,,, in Figure 6. This plot clearly demonstrates that

optimal focus location can be determined by monitoring the diffracted signal from a latent image
grating. Experimental verification of this optimal focus location technique is provided in [5].

The optimal exposure value for any lithographic process is defined as the exposure value
which results in the developed photoresist line having the desired CD. It is well known that the
optimal exposure value for each wafer depends on the optical properties of each sample, as discussed
in [6]. Using the combination of PROLITH and RCWT discussed previously it is possible to
associate a latent image diffraction value with each developed CD. Figure 9 is a theoretical plot of
the fraction of incident power diffracted into the first order as a function of exposure dose. It can be
seen that the diffracted power increases monotonically with exposure dose over a wide range of
values which includes the optimum exposure range. Figure 10 is a theoretical plot of the CD that
would have been obtained had the exposure been stopped at the indicated 1st—order diffracted power
value. Thus, by monitoring the latent image diffraction signal “’in—situ”, exposure would be stopped
when the desired diffraction level is reached: resulting in optimum CD of the developed line.

Towards Solving the Inverse Diffraction Problem:

The previous discussion has shown that the amount of incident power diffracted power
diffracted into the various orders can be accurately predicted for an arbitrarily shaped grating placed



on top of a dielectric stack. The inverse of this problem is: Given the diffraction efficiencies, is it
possible to predict the shape of the scatterer ? If no apriori assumptions are made about the shape of
the grating, it appears doubtful that an answer to the above question can be found. For any practical
problem, however, it should be possible to parametrize the grating. For example, the grating can be
assumed to have a trapezoidal shape with unknown height, width, and sidewall angle. These
parameters are defined in Figure 11 . Note that Figure 9 represents only one of numerous ways in
which the grating may be parametrized. The period of the grating is assumed to be known, since it
can be easily measured very accurately. In addition, the number of dielectric layers undemeath the
grating is known and the index of refraction of these layers may be assumed to be a known quantity.
The practical problem of interest now becomes Given the diffraction efficiencies, is it possible to
estimate various parameters of the grating ? This problem has been investigated by numerous
researchers over the years; see ref 4. of [8] for a complete list of references. In all these applications
scalar theory has been used to estimate the grating parameter of interest, from a measurement of the
diffraction signal.

The grating parameter estimation problem may also be viewed as a pattern recognition
problem, whereby a distinct diffraction signal is associated with a specific grating shape. In order for
this technique to work a large calibration data base of diffraction signals must be generated. In a
previous article, in the present scatterometry series, it was shown by Gottscho et. al. [36] that a neural
network may be trained to classify the grating from its observed diffraction signal. For that
experiment a large number of samples were created with varying sidewall angles. The samples were
measured using cross—section SEM and classified to have undercut, overcut or vertical sidewalls.
The diffraction signal from these calibration samples were then measured and used to train a neural
network. With the availability of first principle diffraction simulation methods, the possibility arises
of training the pattern recognition technique on theoretically generated diffraction data. This would
eliminate the need for a physical calibration set with the associated time and expense for the
calibration of the samples and measurement of the diffraction signals. In addition, the theoretically
generated diffraction signals would by definition have no error since they utilize a first principle
simulation.

Diffraction Scatter Analysis

The first use of rigorous diffraction theory in the development of a technique to measure
grating parameters was for the linewidth determination of a chrome-on—glass photomask gratings
[37]. Using RCWT it was observed that the fraction of incident power diffracted into the
O-transmitted order decreased monotonically with increasing linewidth. Assuming a rectangular
line—shape of known height for the photomask grating, a one—to—one relationship existed between
the linewidth of the grating and the O—transmitted order power. The technique then simply consisted
of shining a laser beam on the diffraction grating and measuring the fraction of incident power
diffracted into the O—transmitted order. Prediction of linewidth was then made using a look—up table
that was generated using RCWT. This technique was tested on photomask gratings manufactured by
different companies and excellent results were obtained.

In most cases the diffraction signal is a complicated function of the grating parameters and a
simple interpretation of the signal is not possible. Consider a 32 Wm period etched silicon grating
illuminated with a He—Ne laser beam. This is the same problem as was considered in [8]. The

10
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diffracted signal consists of nearly a 100 diffracted orders at angular locations specified by the
grating equation. Since the number of diffracted is so large an envelope function may be obtained for
the diffraction orders. The diffracted power distribution envelope is a very sensitive function of the
grating parameters. Figure 12 is a theoretical plot of this envelope function for rectangular shaped
gratings having a linewidth of 1.5 pm and varying height. The plots are displaced vertically,
however, it can be clearly seen that the shape of the envelope changes significantly as the grating
height is varied.

The strategy in solving the parameter identification problem is conceptually an iterative one.
We hypothesize a geometry, compute the associated diffraction patiern, compare this with an actual
measurement, adjust the hypothetical geometry, recompute, compare, etc. until satisfactory
convergence. The practical approach is to decouple the expensive forward problem of computing the
hypothetical diffraction patterns from the inexpensive inverse problem of matching to the actual
diffraction pattern so that the recurring cost of monitoring the process is small. Hence a large set of
diffraction patterns for likely perturbations of the grating parameters of interest are computed and
used as input to a statistical analysis or neural network pattern matching software. In the problem
considered above only the height of the grating was assumed to be unknown. The theoretical
calibration data was therefore calculated for each height value between 0.6 um and 1.2 pm, with a
discretization step of 0.02 um. The multivariate statistical technique, Partial Least Square (PLS),
was used to train on the simulated scatter data. This method is very robust and not computationally
intensive. In addition, in a comparison of similar techniques to the analysis of infrared spectroscopy
data, [38], PLS was shown to be the method of choice. Prediction of height is an extremely simple
operation and simply involves a matrix—vector multiplication.

Experimentally, the diffraction pattern from gratings etched into bulk silicon of 5 wafers, was
measured and a prediction of the height done using PLS trained on the theoretical scatter data. 14 die
locations on each wafer were measured. These gratings were known to have vertical sidewalls and a
1.5 um linewidth. The height of the gratings were verified using a scanning force microscope (SFM).
Figure 13 isa plot of the predicted heights and also measured using the SFM. It can be seen that the
technique worked to perfection and ... 7nm +- 3nm.

When the period of the grating is much larger than the wavelength of incident radiation, a large
number of diffraction orders is obtained and an envelope function can be defined. For short pitch
structures only a few, if any, diffracted orders exist and a diffracted power envelope is obtained in a
different manner. Now, the envelope function is obtained by measuring the fraction of incident
power diffracted into a particular order as the angle of incidence is varied over a certain range.
Figure 14 is a plot of the power diffracted into the first order for a 1 micron thick photoresist on Si
grating for three different linewidths. The grating period is assumed to have a rectangular shape and
has a period of 2 microns. Figure 15 is a plot of the power diffracted into the first order for
trapezoidal shaped, 1 micron thick photoresist gratings having different sidewall angles. The top
linewidth is 1 micron and again the period is 2 microns. Illumination is assumed to be from a He—-Ne
laser. These plots illustrate that adistinct change in the envelope functions are obtained as the grating
parameters are varied.

To test the diffraction analysis strategy theoretical plots were generated over a larger
parameter space. The height of the grating varied between ... and ... with a step size of ... The sidewall
was varied from 80 to 90 degrees with a step size of 2 degrees and the linewidth was varied between ..

11
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and ... with a step size of .... Thus a total of ... plots were generated and used to train the PLS routine.
The parameter prediction of the routine is given in tabulated form in Table 1.

The forward problem is computationally intense because it requires essentially an integration
of Maxwell’s equations for the complex geometry associated with each point in a very large
parameter space. We have therefore implemented this computation on a massively parallel
supercomputer since they can be as much as an order of magnitude more cost—effective than
traditional vector supercomputers.

The particular massively parallel machine in use is the 1024—processor nCUBE2 hypercube
supercomputer at Sandia National Laboratories. The nCUBE2 is a MIMD machine, thus, unlike the
connection machine, each processor acts independently. A d-dimensional hypercube
multiprocessor consists of a set of P = 29 processors, identified by distinct binary numbers from 0 to
2d _ 1. Information is transmitted between them by passing messages through a network in which
wires connect processors whose binary values differ in a single bit. For example, ad = 3 hypercube
could be represented by a standard cube in which the corners were processors and the edges were
connecting wires.

Hypercube multiprocessors enjoy wide popularity because they have several attractive
properties: The network is very regular and can be described concisely in a recursive fashion. Each
processor is connected to just d communication wires, so larger systems can be engineered than if
each processor were directly connected to all others. A message can be routed between any two
processors by traversing at most d wires, so a broadcast to all processors can be completed in $§O(Nog
P)$ time as compared with $O(P)$ time for architectures such as meshes which have a fixed number
of connections per processor. Finally, to travel between two processors, a message simply uses one
wire from each bit in which the two processor’s numbers differ. The hypercube architecture
therefore offers a well balanced, elegant approximation to the conceptually ideal machine in which
each processor is directly connected to all others.

There are two basic goals in using any parallel machine. The firstis to assign each processor a
comparable amount of work — otherwise some processors will be idle while others are overloaded.
The second is to minimize communication between processors during the course of the computation
— otherwise processors must in general wait for the requisite data to arrive before proceeding with
their computations. An efficient parallel computation must therefore have good load balance and
low communication overhead.

Keeping these goals in mind, we have investigated various strategies for parallelizing the
forward computation. For challenging problems the parameter space is large because the geometry
is intricate, and the simplest and most efficient strategy is to exploit parallelism in this parameter
space. That is, each processor is assigned a comparable portion of the parameter space which it
integrates nearly independently of the other processors. The processors can in principle operate
completely independently and thereby achieve perfect efficiency if input/output requirements are
neglected. In practice, memory requirements may make it impossible torun a full integration on one
processor, in which case each integration must be distributed across several processors. In addition,
portions of the integrations for distinct parameter sets are in general redundant, and this can be
exploited to net benefit at the cost of introducing extra communication and algorithmic complexity.
We have implemented parallel forward scattering RCWT solvers based on these ideas for singly and
double periodic structures and have achieved very high efficiency on the nCUBE hypercube [39].
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,1>Introduction

<Paral02>

Light scattered from periodic structures carrier useful information
about the diffracting structure. The existence of the periodic structure
provides an enhanced sensitivity to changes in the shape of the grating.
and numerous metrology applications in microlectronics manufacturing
have evolved over the years to exploit this behaviour of the scattered
fields. Diffraction based techniques now exist for alignment, overlay,
temperture measurement, latent image focus and exposure measurement,
post expost bake monitoring and numerous dimensional parameter control
applications. An attractive feature of these techniques is that they

are rapid, non-contact, non-destructive and quantitative. An additional
advantage is that they are greatly amenable to real-time and in-situ
applications.

<Paral2z2>

The continued shrinkage of dimensions is placing an unprecedented
demand on the various metrolgoy techniques. For diffraction based
techniques it is clear that a fundamental understanding of the diffraction
phenomena is essential to the contiued use of these methods as critical
dimensions approach a quarter micron. Using scalar diffraction theory,
the far-field diffraction pattern can be calculated from the fraunhoffer
diffraction integral. It is well know that as the dimension of the
diffracting structure becomes comparable to the wavelength of the
incident field, use of scalar diffraction theory can no longer be
justified. For example, let us consider an equal line and space etched
silicon grating. According to Fourier theory the power diffracted
into the various orders is a function of the linewidth to space ratio
only. Specifically the diffracted powers are not a function of wavelngth,
period of grating, and polarization. no power should be diffracted
into the even orders. In addition, polarization is not accounted for.
gratingWhen the size of the diffracting the case of a periodic structure
illuminated with a laser beamThese applications exploit the sensitivity
of the diffraction pattern to changes in the value of the parameter
being measured. The existense of the periodic pattern provides an
enhanced s

<Paral2z2>

<|,2>Rapid advances in computational capabilities, due, in part at
least, to the shrinkage in device dimensions, have made it possible
to obtain solution to many of the diffraction problems previously
considered to be intractable. Numerous techniques have been developed
over the years for the solution of the grating diffraction problem.
An excellent overview of these techniques may be found in [Gaylord
Proc. paper and Petit Book]. A large number of solution methods may
be broadly classified into integral and differential methods. Both
methods are equally rigorous, however, they differ widely in ease

of implementation and applicability to a broad class of problems.

Due to the mathematical complexity associated with integral methods,
they are not widely used. Among the differential methods Rigorous
Coupled Wave Theory (RCWT) developed by Moharram and Gaylord has proved
to be particularly useful because of its ease of use and wide range




of applicability. It will be discussed in detail in section *&~. An
equivalent differential technique (known as the modal method) that
utilizes waveguide modes for the expansion of the fields inside the
grating region was developed by Burchardt and Kaspar. This method

has been used and extended by Nyyssonen and Kirk and by Yuan and Wojck
for the rigorous simulation of images obtained in a microscope and
simulation of alignment signals.

<Paral2>

Both RCWT and modal method utilizes a Fourier expansion of the refractive
index in the grating region. Thus these techniques work well for gratings
having a continuously varying refractive index (e.g. latent image

gratings) and grating where the extent of the refractive index discontinuity
is not large (e.g. dielectric and semiconductor gratings). In cases

where the refreactive index discontinuity is large, the analytical
waveguide model developed by Botten et. al. and extended by Davidson

has been shown to have improved convergence characteristics.

<ParaQ2>

Two additional solution techniques should be mentioned here because

of their versatility in solving nearly all singly and doubly periodic
grating diffraction problems. The tradeoff is in the computationally
intensive requirements of both techniques. The first

<|,3>technique utilizes Finite Element Analysis and has been developed
by Wojck et. al. for the simulation of metrology and alignment signals
in IC-related applications. The second technique, TEMPEST developed

at Berkeley, is a massively paralle computer solution of the vector
diffraction problem using a time-domain, finite-difference method.
TEMPEST is implemented on the massively parallel architecture of the
Thinking Machines Corp. Connection Machine.



